Mathematical derivation of viscous shallow-water equations with zero surface tension

نویسندگان

  • Didier Bresch
  • Pascal Noble
چکیده

The purpose of this paper is to derive rigorously the so called viscous shallow water equations given for instance page 958-959 in [A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys, 69 (1997), 931–980]. Such a system of equations is similar to compressible Navier-Stokes equations for a barotropic fluid with a non-constant viscosity. To do that, we consider a layer of incompressible and Newtonian fluid which is relatively thin, assuming no surface tension at the free surface. The motion of the fluid is described by 3d Navier-Stokes equations with constant viscosity and free surface. We prove that for a set of suitable initial data (asymptotically close to “shallow water initial data”), the Cauchy problem for these equations is well-posed, and the solution converges to the solution of viscous shallow water equations. More precisely, we build the solution of the full problem as a perturbation of the strong solution to the viscous shallow water equations. The method of proof is based on a Lagrangian change of variable that fixes the fluid domain and we have to prove the well-posedness in thin domains: we have to pay a special attention to constants in classical Sobolev inequalities and regularity in Stokes problem. 1 ha l-0 04 56 18 1, v er si on 1 12 F eb 2 01 0

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نگاشت همدیس در طرح‌های انگشتی سافمن- تیلور

 We studied the growth of viscous fingers as a Laplacian growth by conformal mapping. Viscous fingers grow due to Saffman-Taylor instability in the interface between two fluids, when a less viscous fluid pushes a more viscous fluid. As there was an interest in the rectangular Hele-Shaw cell, we solved the Laplacian equation with appropriate boundary conditions by means of conformal mapping tech...

متن کامل

Derivation of a viscous Boussinesq system for surface water waves

In this article, we derive a viscous Boussinesq system for surface water waves from Navier-Stokes equations. So, we use neither the irrotationality assumption, nor the Zakharov-Craig-Sulem formulation. During the derivation, we find the bottom shear stress, and also the decay rate for shallow (and not deep) water. In order to justify our derivation, we check it by deriving the viscous Korteweg-...

متن کامل

Cauchy problem for viscous rotating shallow water equations

We consider the Cacuhy problem for a viscous compressible rotating shallow water system with a third-order surface-tension term involved, derived recently in the modelling of motions for shallow water with free surface in a rotating sub-domain [18]. The global existence of the solution in the space of Besov type is shown for initial data close to a constant equilibrium state away from the vacuu...

متن کامل

Cosine Effect on Shallow Water Equations and Mathematical Properties

This paper presents a viscous Shallow Water type model with new Coriolis terms, and some limits according to the values of the Rossby and Froude numbers. We prove that the extension to the bidimensional case of the unidimensional results given by [J.–F. Gerbeau, B. Perthame. Discrete Continuous Dynamical Systems, (2001)] including the Coriolis force has to add new terms, omitted up to now, depe...

متن کامل

On the Well-Posedness for the Viscous Shallow Water Equations

In this paper, we prove the existence and uniqueness of the solutions for the 2D viscous shallow water equations with low regularity assumptions on the initial data as well as the initial height bounded away from zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010